Complementation of the Crystal Field for Dihedral Optical Activity

By STEPHEN F. MASON and RICHARD H. SEAL (Chemistry Department, King's College, London WC2R 2LS)

Summary The *d*-electron optical activity of the trisdiamine complexes of cobalt(III), whether randomly oriented or with a fixed orientation in a single crystal, is quantitatively rationalised by a model in which the transient-induced electric dipole moments in the ligand groups are correlated collinear to the magnetic dipole moment of the metal-ion transition by the leading electric multipole moment of that transition, a hexadecapole.

In octahedral and other centrosymmetric transition metal complexes the intensity mechanism for d-electron transitions discussed in the preceding communication¹ is forbidden, although the corresponding vibronic mechanism, dependent upon the ungerade nuclear modes, remains operative. On reducing the symmetry of a 6-co-ordinate complex from O_h to O the mechanism becomes allowed, but not for the quadrupolar d-electron transitions which are the effective excitations in the complexes belonging to the isomorphous T_d group. For a complex of O symmetry only the charge distribution of the hexadecapolar d-electron transitions constructively correlate transient induced electric dipole moments in the ligands (Figure). In contrast to the T_d case, the $xy(x^2 - y^2)$, $yz(y^2 - z^2)$, and $xz(z^2 - x^2)$ components of a hexadecapole transform under the same row of the T_1 representation in O as, respectively, the z, x, and y component of an electric and a magnetic dipole moment.

The d-electron transitions $|A_0\rangle \rightarrow |A_a\rangle$ with an electric hexadecapole moment, H_{0a} , are generally magnetic-dipole allowed, the moment $|m_{a0}|$ being,² e.g., $2\sqrt{2}$ Bohr magneton for each of the three components of the ${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$ transition of $[Co(NH_3)_6]^{3+}$ at 21 kK.† In non-centrosymmetric

 $1 k K = 10^3 cm^{-1}$.

complexes containing the $[CON_6]^{3+}$ chromophore the induced electric dipole moments μ_{0b} in the ligands (B) are correlated by H_{0a} to give a resultant electric dipole transition moment with the z-component (equation 1). Equation (1) is the

$$\mu_{\text{oa}}^{z} = -\sum_{B} \overline{\alpha}(B) H_{\text{oa}}^{xy(x^{2}-y^{2})} G_{xy(x^{2}-y^{2}),z}^{B}$$
(1)

analogue of equation (6) in the preceding communication and has a similar basis. The individual groups B of the ligands have the mean polarisability $\overline{\alpha}(B)$ at the frequency ν_{0a} and the potential between the induced moment μ_{ob}^{z} in such a group and the 2⁴-pole $H_{oa}^{pu(x^0-y^4)}$ has the angular and radial geometric factor given by equation (2), where

$$Gxy(x^2 - y^2), z = 315 XYZ(Y^2 - X^2)/2R^{11}$$
(2)

X, Y, Z refer to the co-ordinates of B in the octahedral frame.

The component of the ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$ transition of the $[\operatorname{CoN}_{6}]^{3+}$ chromophore with O symmetry giving the 2⁴-pole $H^{xy(x^{3}-y^{4})}_{oa}$ is the excitation $d_{xy} \rightarrow d_{x^{2}-y^{4}}$ which results in the configuration $\chi^{x_{y}}_{xy} \rightarrow d_{x^{2}-y^{4}}$ which results in the configuration $\chi^{x_{y}}_{xy}$. This component has a z-polarised magnetic moment m^{z}_{ao} , collinear with μ^{z}_{oa} (equation 1), producing the rotational strength R^{z}_{oa} . However, the summation of R_{oa} over all three components of the ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$ transition gives a zero resultant using equation (1), since the cyclic permutation of X, Y, Z in equation (2) gives a set of three G-factors with a vanishing sum for O symmetry.

Equations (1) and (2) are based on the point multipole approximation, which is inadequate for the present purpose. The radial factor for the 2⁴-pole moment of a 3*d*-electron transition is dependent upon $\langle 3d | r^4 | 3d \rangle$, and doubleexponent 3*d*-wave functions³ give $[\langle r^4 \rangle]^{\dagger}$ the values of

100 j.**2**22

0.684 and 0.956 Å for Co³⁺ and neutral cobalt, respectively. These distances are not negligible relative to the Co—N bond length⁴ (2 Å) or the metal-carbon distance (3 Å) in [Co(en)₃]³⁺. Accordingly each 2⁴-pole moment of the ¹A₁ \rightarrow ¹T₁ transition was taken for computational purposes in the present work to consist of eight charges $\pm \sqrt{2} e/4$ disposed according to the particular component angular distribution, *e.g.* $[xy(x^2-y^2)/r^4]$ (Figure), at a distance r =0.837 Å from the metal ion, corresponding to $[< r^4 >]^{\dagger}$ for cobalt with +1.3 charge.

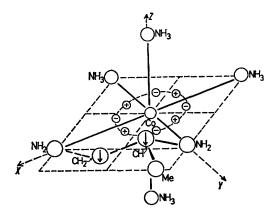


FIGURE. The correlation of the induced electric dipole moment in the CH₂ group below the xy plane and in the CH group above that plane in the λ -puckered R-(-)-propylene-diamine chelate ring produced by the electric hexadecapole moment of the $d_{xy} \rightarrow d_{x^2-y}$ transition of the $[\text{CON}_6]^2$ + chromophore. The d-electron transition corresponds to a clockwise rotation of charge viewed from the +Z direction, producing a z-polarised magnetic dipole moment parallel to the correlated induced electric dipole moments in the ligand groups, and so resulting in a positive rotational strength.

With the extended multipole model, the product of the 2⁴-pole moment and g-factor in equation (1) becomes a sum over the transition monopolar charges, $q_{00}^{i} = \pm \sqrt{2} e/4$ [Figure; equation (3)], where \mathbf{R}_{1B} , with the components

$$-H_{oa}^{xy(x^2-y^3)}G_{xy(x^2-y^3),z}^{B} \equiv S_{z}^{B} = \sum_{j=1}^{8} q_{oa}^{\ j}Z_{jB}R_{jB}^{-3}$$
(3)

 X_{1B}, Y_{1B}, Z_{1B} , is the position vector of the point induced dipole μ_{ob}^{z} in the ligand group B with respect to the monopole q_{oa}^{1} . Equations (1) and (3) give the z-component of the ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$ transition in a $[CoN_{6}]^{3+}$ complex with O symmetry the first-order rotational strength given by equation (4). The corresponding R_{oa}^{z} and R_{oa}^{y} components

$$R_{os}^{s} = -im_{so}^{s} \sum_{R} \overline{\alpha}(B) S_{s}^{B}$$
⁽⁴⁾

arising respectively from the excitations to the configurations $\chi_{yz}^{y_{zz}^{a-z^{3}}}$ and $\chi_{zz}^{z_{zz}^{a-z^{3}}}$, follow from equation (4) by cyclic permutation of x, y, and z. A model complex of O symmetry was considered, consisting of the O_{λ} chromophore $[\operatorname{CoN}_{6}]^{3+}$ with each octahedral edge spanned by a $-\operatorname{CH}_{2^{-}}$ $\operatorname{CH}_{2^{-}}$ grouping with the λ -puckered conformation and bond distances and angles measured in the X-ray crystal structure analyses⁴ of R-(-)-pn complexes of cobalt(III). From the model it is found, employing⁵ $\overline{\alpha}(\operatorname{CH}_{2}) = 1.84$ Å³, that the three ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$ components have an equal positive rotational strength, the sum R(O) having the value + 0.40 per chelate ring in units of 10^{-40} c.g.s. The effect is

additive over the number of rings, as is the approximate experimental counterpart, the conformational rotational strength, which has the value⁶ of +0.6 per λ -ring in the same units for R-(-)-pn complexes of cobalt(III).

In the D_3 complexes, $[Co(diamine)_3]^{3+}$, the three O_h components of the ${}^{1}T_{1g}$ state are no longer necessarily degenerate, and appropriate linear combinations transforming as A_2 and E in D_3 are required, *e.g.*, equation (5).

$$\psi(A_2) = \sqrt{3} \left(\chi_{xy}^{x^2 - y^2} + \chi_{yz}^{y^2 - z^2} + \chi_{zz}^{z^2 - z^2} \right)$$
(5)

The induced electric dipoles in the ligands correlated by one O_h component now form a non-zero scalar product with the magnetic dipole moment of the other components, resulting in relatively large first-order rotational strengths for the D_8 components, ${}^{1}A_1 \rightarrow {}^{1}A_2$ and ${}^{1}A_1 \rightarrow {}^{1}E$, of the parent ${}^{1}A_1 \rightarrow {}^{1}T_1$ transition. The first-order values for the *E*-component, R(E), are found to be in tolerable agreement with the corresponding experimental values obtained from axial single-crystal c.d. measurements, 7,9 but the calculated first-order sum, $R(T_1) = R(A_2) + R(E)$, which corresponds to the measured c.d. for the randomly-oriented complex ion, is found to be too small.

TABLE

The calculated and the observed rotational strengths, $R (10^{-40} \text{ c.g.s.})$, and increase in dipole strength relative to $[\text{Co}(\text{NH}_{s})_{e}]^{3+}$, $\Delta D (10^{-38} \text{ c.g.s.})$, for the ${}^{1}A_{1} \rightarrow {}^{1}T_{1} d$ -electron transition and its E component near 21 kK in the tris-diamine complexes cobalt(III) complexes. Calculated values are based on the absolute configuration and molecular structure determined by X-ray diffraction methods with the NH₂ groups $[\overline{\alpha} = 1 \cdot 44 \text{ Å}^{3})^{a}$ and CH_n groups $[\overline{\alpha}(\text{CH}) = 1 \cdot 435; \overline{\alpha}(\text{CH}_{2}) = 1 \cdot 84; \text{ and } \overline{\alpha}(\text{Me}) = 2 \cdot 24 \text{ Å}^{3}]^{a}$ placed at the corresponding heavy-atom position.

Complex ^b and configuration		R(E)c	$R(T_1)$	$R(O)^{d}$	$\Delta D(T_1)$ e
$(+)-[Co(en)_3]Cl_3 \cdot H_2O \\ \Delta(\delta\delta\delta) \ lel^{t}$	calc. obs.	$+64 + 53^{k}$	+4.0 + 4.4	-1.0	4·0
(-)-[Co(R-pn) ₈]Br ₈	calc.	-65.1	-3.8	+1.0	3·5 4·4
$\Delta(\lambda\lambda\lambda) \ lel^{g}$ (+)-[Co(R-pn) ₃] ³⁺	obs. calc.	-41.5^{1} +63	$-4 \cdot 2 + 5 \cdot 9$	+1.9 + 0.7	4·5 3·6
$\dot{\Delta}(\lambda\lambda\lambda) ob^{h}$ (-)-[Co(S,S-cptn) ₈]-	obs		+8.0	+1.9	$4 \cdot 5$
$Cl_{3} \cdot 4H_{2}O$ $\Delta(\delta\delta\delta) lel^{1}$	calc. obs	+69·2 +43·4m	$+3.9 + 4^n$	-1.0	4·8
$(-)-[Co(tn)_3]Cl_3 H_2O$	calc.	-10.2	-0.50	0	$2 \cdot 0 \\ 0 \cdot 2$
$\Delta(\text{tris-chair})^{j}$	obs.	-10.5^{1}	—1·36¤	0	1.0

^a From ref. 5 with $\overline{\alpha}$ (NH₂) reduced from the free amine value (1.76 Å³) to allow for co-ordination by the lone-pair, based on the reduction between NH₃ ($\overline{\alpha} = 2\cdot23$ Å) and NH₄+ ($\overline{\alpha} = 1\cdot71$ Å³). ^b Abbreviations: en = ethylenediamine; *R*-pn = R-(-)-1,2-propylenediamine; *SS*-cptn = *trans*-SS-1,2-diaminocyclopentane; tn = trimethylenediamine. ^c Where uncorrected (refs. 7 and 8), the observed *R(E)* reported are corrected by the factor 2/3 to allow for the fixed orientation of the complex ion in the crystal. ^d The calculated *R(O)* refer to the contributions (equation 4) summed over the three *O* components and three chelate rings. The observed *R(O)* refer to the conformational effect of three λ -puckered *R*-(-)-pn rings (ref. 6). ^e $\Delta D = \Sigma |\mu_{08}|^2$ from equation (1), the sum being taken over the three components of $1^A_1 \rightarrow 1T_1$. [†] M. Iwata, K. Nakatsu, and Y. Saito, *Acta Cryst.*, 1969, B25, 2562. ^e H. Iwasaki and Y. Saito, *Bull. Chem. Soc. Japan*, 1966, 39, 92. ^b From the crystal structure of Δ -(+)-[Co(*R*-pn)₃][Co(CN)₆]·2H₂O; R. Kuroda and Y. Saito, *Acta Cryst.*, 1973, B29, 2438. ^k Ref. 7. ¹ Ref. 8. ^m Ref. 9. ⁿ KBr matrix value; *R(T₁) = - 5*·4 for aqueous solution (ref. 9). ^p KBr matrix value for Δ -(-)-[Co(tn)₈]Br₃-·H₂O; *R(T₁) = - 0*·23 for aqueous solution (ref. 6).

This deficiency is rectified on proceeding to second-order (Table) where the induced electric dipoles in the ligand groups correlated by the 2^4 -pole moment of the *d*-electron transition (Figure) themselves correlate a component of the electric dipole moment of the u.v. ligand-metal chargetransfer transition. The combination of single-crystal and vacuum u.v. c.d. spectroscopy places¹⁰ the E and the A_{\bullet} component of the charge-transfer transition in (+)-[Co(en),]Cl, at 48 and 58 kK, respectively, while the band-origins of the corresponding components of the ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$ d-electron transition near 21 kK are virtually degenerate.¹¹ As the energy-interval between the two E components is the smaller, the second-order d-electron R(E) is the larger in (+)-[Co(en)₃]Cl₃ and, by analogy, in other tris-diamine cobalt(III) complexes.

The sums of the calculated first- and second-order rotational strengths are found to be in satisfactory agreement with experiment (Table) provided that the experimental data refer to the particular crystals on the X-ray structural data⁴ for which the calculations were based. The experimental $R(T_1)$ for $\Delta(\lambda\lambda\lambda) - (+)[Co(R,R-cptn)_3]Cl_3$ is negative in a KBr matrix but positive in aqueous solution,⁹ and our calculation based on the X-ray crystal structure analysis of the enantiomer¹² is in agreement with the KBr matrix c.d. measurement (Table). The calculations have been extended¹³ from the cases recorded (Table) to all tris-diamine cobalt(III) complexes for which c.d. data^{6,14} and X-ray crystal structure analyses4,15 are at present available.

We thank Professor Y. Saito for structural data in advance of publication.

(Received, 27th January 1975; Com. 093.)

- ¹ R. Gale, R. E. Godfrey, S. F. Mason, R. D. Peacock, and B. Stewart preceding communication.
- ² W. Moffitt, J. Chem. Phys., 1956, 25, 1189. ³ J. W. Richardson, W. C. Nieupoort, R. R. Powell, and W. F. Edgell, J. Chem. Phys., 1962, 36, 1057.
- 4 Y. Saito, Co-ordination Chem. Rev., 1974, 13, 305.
- ⁵ R. J. W. Le Fèvre, Adv. Phys. Org. Chem., 1965, 3, 1.
- ⁶S. F. Mason in, 'Fundamental Aspects and Recent Developments in Optical Rotatory Dispersion and Circular Dichroism,' eds. F. Ciardelli and P. Salvadori, Heyden, London, 1973, p. 214. ⁷ A. J. McCaffery and S. F. Mason, *Mol. Phys.*, 1963, 6, 359.

 - ⁸ R. R. Judkins and D. J. Royer, *Inorg. Chem.*, 1974, 13, 945.
 ⁹ H. Toftlund and E. Pedersen, *Acta. Chem. Scand.*, 1972, 26, 4019.
 - ¹⁰ Ref. 6, p. 199
 - ¹¹ R. Dingle and C. J. Ballhausen, Mat. Fys. Medd. Dan. Vid. Selsk., 1967, 35, No. 12.
- 12 M. Ito, F. Marumo, and Y. Saito, Acta Cryst., 1971, B27, 2187.
- ¹⁸ R. H. Seal, Ph.D. Thesis, University of London, 1974.
- ¹⁴ J. Fujita and H. Ogino, Chem. Letters, 1974, 57.
- 15 S. Sato, Y. Saito, J. Fujita, and H. Ogino, Inorg. Nuclear Chem. Letters, 1974, 10, 669; S. Sato and Y. Saito, Acta Cryst., in the press.